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A Simple Way to Model Curved Metal Boundaries in
FDTD Algorithm Avoiding Staircase Approximation
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Abstract—The conventional FDTD algorithm in Cartesian coor-
dinates uses staircase approximation to treat curvilinear surfaces.
This approximation causes loss of accuracy often unacceptable.
An extremely simple and more accurate polygonal approximation
of curved surfaces is proposed in this paper. The method im-
proves significantly the accuracy of the original FDTD algorithm,
without increasing its complexity.

I. INTRODUCTION

Because of its high flexibility and accuracy, the FDTD
method is increasingly popular in analyzing microwave and
millimeterwave structures. Unfortunately, in its simplest for-
mulation, that employs an orthogonal mesh [1], [2], the method
does not provide a good accuracy when curved surfaces are
present. This is mainly due to the staircase approximation
of curvilinear surfaces. Several methods have been proposed
in the literature [3]-[7] to conform the grid to arbitrarily
shaped structures, but they require additional computational
cost and great implementation effort. In this paper we propose
a very simple and accurate procedure to approximate a metal
curved surface within a Cartesian mesh. The method allows
the conventional staircase approximation to be replaced with a
polygonal approximation, thus highly improving the accuracy
level.

II. MODELING SLANTEDWALLS

Consider a rectangular cell, located at a metallic boundary,
that crosses the cell along its diagonal (Fig. 1). The proper
FDTD formulation for the fields relevant to the cell is obtamed
from the integral form of Maxwell’s equations
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Applying (2) to the cell of Fig. 1, one obtains
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where, according to the Yee’s formulation [1], Az, Ay, Az are
the space steps, At is the time step, the superscript indicates
the time index and 4, j, and k are the space coordinate indexes.
FEian g is the E-field component along the cell diagonal and is
therefore zero on the metallic wall. From (3) H, can be easﬂy
calculated as follows:
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Observe that the conventional stairstep evaluation of the same
H component gives
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The modified formula (4) for the triangular cell differs from
the conventional one (5) only for the presence of the 2 factor
in the right hand side. This simply corresponds to the cell
having half the surface and can also be seen as a particular
case of the general formulation given in [7]. This technique
can be used to conform the mesh to any slanted plane wall by
choosing the proper aspect ratio of the cells.

+

III. MODELING CURVED SURFACES

In order to extend the technique described to approximating
curved surfaces, a graded mesh implementation of the original
FDTD algorithm can be adopted [8]. By a proper choice of
the mesh grading it is possible to locate the boundary nodes
of the mesh exactly on the curved surface, in such a way
as to approximate the arc laying on a cell diagonal with the
diagonal itself (see Fig. 5).

IV. RESULTS

In order to test the accuracy of the proposed formula, a
simple rectangular cavity with dimension 104 10% 18 mm has
first been simulated using three different discretizations:

1051-8207/95$04.00 © 1995 IEEE



268

Ay

IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 5, NO. 8, AUGUST 1995

4
«

" Actual boundary

W Etangential

v

Ex(i+0.5,j+l,k)$

Fig. 1. Enlargement of a cell close to the slanted metallic surface.
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Fig. 2. Cross-section of a rectangular resonant cavity perfectly fitting to the
orthogonal mesh.

COMPARISON AMONG THEORETICAEﬁi]I;?\T(IJMERICAL ResuLrs (UniT = GHz)
METHOD TEon TE11 TMue TEorz TE12 TMuny TE11

Theory 17.147 | 17.147 | 21.198 | 22.407 | 22.407 | 22.775 | 22.775

Orthogonal fitting | 17.1 17.1 212 | 224 | 224 22.8 22.8

Staircase 16.7 16.7 22.6 215 215 24.1 22.1

New formula 17.1 17.1 21.1 224 22.4 227 221

1) a conventional rectangular mesh perfectly fitting the
geometry of the cavity (Fig. 2)

2) a slanted cavity with new evaluation of boundary H
fields (Fig. 3)

3) a slanted cavity with the best staircase approximation.

The cavity has been discretized in all cases with approxi-
mately the same number of cells.
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Fig. 3. Cross-section of the same cavity of Fig. 2, 45° slanted and treated
with the proposed formula.

Table I shows the theoretical and calculated resonant fre-
quencies for the first five modes of the cavity for the three
different discretizations.

The staircase approximation is seen to deteriorate the ac-
curacy of the method, the error being of the order of 2
+ 6%. With the same numerical effort, the introduction of
the triangular cells at the metal boundary restores the same
accuracy of the orthogonal mesh.

The proposed formula has then been combined with a proper
mesh grading. The technique has been applied to the analysis
of the cylindrical cavity measured by Fontecha et al. [9] and
analyzed by Niu et al. [10] (Fig. 4).

Fig. 5 shows how the mesh matches both the cylindrical
surface and the feeding rectangular waveguides. Experimental
data and FDTD with staircase approximation from [10] are
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Fig. 5. Transverse section of the mesh.

compared with the proposed FDTD new implementation and
with a mode matching result. The cylindrical cavity is dis-
cretized here by 51«51+13 = 33813 cells instead of 72+ 72+ 8
= 41472 as in [10]; moreover, the feeding lines are terminated
by unimodal absorbing boundary conditions [11], [12]. This
termination allows for a great mesh saving: only 16%16+34
cells have been required to model the feeding lines instead of
40%20x100 as in [10]. Thus, a global mesh saving greater than
4 times is attained. It should be observed however that a time
step of 0.614 ps instead of 0.925 ps has been used in order to
comply with the stability criterion. In spite of the shorter time
step, the computational effort for the analysis of the structure
in Fig. 4 has been reduced: a computational saving of about
3 times has been achieved with a resulting error one order of
magnitude smaller (0.21% instead of 2.15%)

V. CONCLUSION

A new very simple method for treating curved metal bound-
aries by FDTD has been proposed. An improvement of the
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Fig. 6. Comparison of final results (Experiments and FDTDstaircase data
are published in [8]).

efficiency of more then one order of magnitude has been
demonstrated. The method can easily be extended to curved
dielectric interfaces.
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